
Assignment 3

Joe Puccio

November 4, 2014

Collaborators: Sana Imam, Ryan Allan.

15.1-2

Consider the case where n = 4, and p1 = 1, p2 = 5, p3 = 8, and p4 = 9. Well, if this greedy algo-
rithm were to be applied, it would examine each of the densities, p1 = 1, p2 = 2.5, p3 = 2.67, and p4 = 2.25,
and choose to split at position 3, thus leaving the algorithm to repeat on size n = 1 which would halt
immediately. The resulting revenue would be 8 + 1 = 9. However, we examine that if we had instead split
at position 2, the resulting revenue would have been 5 + 5 = 10. Therefore, this greedy algorithm does not
always determine the optimal way to cut the rods to maximize revenue.

15.1-3

The following bottom-up algorithm solves the modified problem containing penalties, of size c, for each
cut.

Require: recall[0...n] be a new array that stores the established maximums. That is, if recall[n] is defined,
then it recall[n] = p[n].

1: recall[0] = 0
2: for j = 1→ n do
3: q = −∞
4: for i = 1→ j do
5: if j-i=0 then
6: q = max(q, p[i] + recall[j − i])
7: else
8: q = max(q, p[i] + recall[j − i]− c)
9: end if

10: recall[j] = q
11: end for
12: end for
13: return recall[n]

.

3.

We achieve the following values of m (may be off by 1 on some values due to varying initial conditions):
[1, 1, 1, 2, 2, 3, 4, 6, 7, 11, 15, 22, 31, 45, 60, 87, 118, 171, 233, 334, 458, 655, 904, 1287, 1781, 2535]. So
ultimately, the answer is that numbers as large as 2535 may be passed between the two spies given that they
have only 26 stones to throw.

The following algorithm was used to produce this list:

1

#!/ usr / bin /python
import sys
#c o l l a b o r a t o r s : Sana Imam, Ryan Allan

currentRow = []
overa l lOutput = []

f o r n in range (0 , 2 7) :
nextRow = []
i f n==0:

nextRow . append (1)
e l s e :

m=1 #s t a r t at the f i r s t column
whi le True :

#c a l c u l a t e valueToAdd
valueToAdd = 0
i t e r a t i o n s R e q u i r e d = len (currentRow)
f o r i in range (0 , i t e r a t i o n s R e q u i r e d) :
#e s s e n t i a l l y go from the
#l e f t (c o l 1) through the nonzero va lue s

i f currentRow [i]>=m:
valueToAdd+=1

#add the value d i r e c t l y above to get i n f o
#from a l l rows above currentRow
#(t h i s i s the dynamic programming b i t)

i f valueToAdd !=0:
i f m−1>=len (currentRow) :

pass
e l s e :

valueToAdd+=currentRow [m−1]
#pr in t valueToAdd
m+=1
i f valueToAdd == 0 :

break
e l s e :

nextRow . append (valueToAdd)
#pr in t nextRow
#we ’ ve cons t ruc ted the row , now l e t ’ s get our va lue o f i n t e r e s t from that row
f o r indexOfRow in range (0 , l en (nextRow)) :

i f nextRow [indexOfRow]< indexOfRow :
overa l lOutput . append (indexOfRow)
break

currentRow=nextRow
pr in t n
p r in t overa l lOutput

p r i n t overa l lOutput

2

