Assignment 3

Joe Puccio

November 4, 2014

Collaborators: Sana Imam, Ryan Allan.
15.1-2

Consider the case where n = 4, and p; = 1, po = 5, p3 = 8, and py = 9. Well, if this greedy algo-
rithm were to be applied, it would examine each of the densities, p; = 1, ps = 2.5, p3 = 2.67, and ps = 2.25,
and choose to split at position 3, thus leaving the algorithm to repeat on size n = 1 which would halt
immediately. The resulting revenue would be 8 + 1 = 9. However, we examine that if we had instead split
at position 2, the resulting revenue would have been 5 + 5 = 10. Therefore, this greedy algorithm does not
always determine the optimal way to cut the rods to maximize revenue.

15.1-3

The following bottom-up algorithm solves the modified problem containing penalties, of size ¢, for each
cut.
Require: recall[0...n] be a new array that stores the established maximums. That is, if recall[n] is defined,
then it recall[n] = p[n].
1: recalll0] =0
2: for j=1—>ndo

3: q= —0o0

4: fori=1—jdo

5: if j-i=0 then

6: q = max(q, p[i] + recall[j — i])

7 else

8: q = max(q, p[i] + recall[j —i] — ¢)
9: end if

10: recall[j] = q

11: end for

12: end for

13: return recall[n]

3.

We achieve the following values of m (may be off by 1 on some values due to varying initial conditions):
1,1,1,2, 2 3,4, 6,7, 11, 15, 22, 31, 45, 60, 87, 118, 171, 233, 334, 458, 655, 904, 1287, 1781, 2535]. So
ultimately, the answer is that numbers as large as 2535 may be passed between the two spies given that they
have only 26 stones to throw.

The following algorithm was used to produce this list:



#!/usr/bin/python
import sys
#collaborators: Sana Imam, Ryan Allan

currentRow = []
overallOutput = []

for n in range(0,27):

nextRow = []
if n==0:

nextRow . append (1)
else:

m=1 #start at the first column
while True:

#calculate valueToAdd

valueToAdd = 0

iterationsRequired = len(currentRow)

for i in range(0,iterationsRequired):

#essentially go from the

#left (col 1) through the nonzero values
if currentRow [i]>=m:

valueToAdd+=1

#add the value directly above to get info
#from all rows above currentRow
#(this is the dynamic programming bit)

if valueToAdd!=0:
if m-I>=len (currentRow):
pass
else:

valueToAdd+=currentRow [m—1]
#print valueToAdd

=1

if valueToAdd — 0:
break

else:

nextRow . append (valueToAdd)
#print nextRow

#we’ve constructed the row, now let’s get our value of interest from that row
for indexOfRow in range(0,len (nextRow)):
if nextRow [indexOfRow]<indexOfRow :
overallOutput .append (indexOfRow)
break

currentRow=nextRow
print n

print overallOutput

print overallOutput



